EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Davis et al. 1996
Davis, D.D., Crawford, J., Chen, G., Chameides, W., Liu, S., Bradshaw, J., Sandholm, S., Sachse, G., Gregory, G., Anderson, B., Barrick, J., Bachmeier, A., Collins, J., Browell, E., Blake, D., Rowland, S., Kondo, Y., Singh, H., Talbot, R., Heikes, B., Merrill, J., Rodriguez, J. and Newell, R.E. (1996). Assessment of ozone photochemistry in the western North Pacific as inferred from PEM-West A observations during the fall 1991. Journal of Geophysical Research 101: doi: 10.1029/95JD02755. issn: 0148-0227.

This study examines the influence of photochemical processes on ozone distributions in the western North Pacific. The analysis is based on data generated during NASA's western Pacific Exploratory Mission (PEM-West A) during the fall of 1991. Ozone trends were best described in terms of two geographical domains: the western North Pacific rim (WNPR) and the western tropical North Pacific (WTNP). For both geographical regions, ozone photochemical destruction, D(O3), decreased more rapidly with altitude than did photochemical formation, F(O3). Thus the ozone tendency, P(O3), was typically found to be negative for z6--8 km. For nearly all altitudes and latitudes, observed nonmethane hydrocarbon (NMHC) levels were shown to be of minor importance as ozone precursor species. Air parcel types producing the largest positive values of P(O3) included fresh continental boundary layer (BL) air and high-altitude (z>7 km) parcels influenced by deep convection/lightning. Significant negative P(O3) values were found when encountering clean marine BL air or relatively clean lower free-tropospheric air. Photochemical destruction and formation fluxes for the Pacific rim region were found to exceed average values cited for marine dry deposition and stratospheric injection in the northern hemisphere by nearly a factor of 6. This region was also found to be in near balance with respect to column-integrated O3 photochemical production and destruction. By contrast, for the tropical regime column-integrated O3 showed photochemical destruction exceeding production by nearly 80%. Both transport of O3 rich midlatitude air into the tropics as well as very high-altitude (10--17 km) photochemical O3 production were proposed as possible additional sources that might explain this estimated deficit. Results from this study further suggest that during the fall time period, deep convection over Asia and Malaysia/Indonesia provided a significant source of high-altitude NOx to the western Pacific. Given that the high-altitude NOx lifetime is estimated at between 3 and 9 days, one would predict that this source added significantly to high altitude photochemical O3 formation over large areas of the western Pacific. When viewed in terms of strong seasonal westerly flow, its influence would potentially span a large part of the Pacific. ¿ American Geophysical Union 1996

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, General or miscellaneous
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit