EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Hu & Holzworth 1996
Hu, H. and Holzworth, R.H. (1996). Observations and parameterization of the stratospheric electrical conductivity. Journal of Geophysical Research 101: doi: 10.1029/96JD01060. issn: 0148-0227.

Simultaneous in situ measurements of the stratospheric electrical conductivity, made from multiple balloon platforms during the 1992--1993 Extended Life Balloon-Borne Observatories (ELBBO) experiment, have yielded the most comprehensive data set on the stratospheric electrical conductivity. The ELBBO project involved launches of five superpressure balloons into the stratosphere from Dunedin, New Zealand, beginning November 10, 1992, and lasting through March 18, 1993. Most of the balloons floated at a constant altitude of 26 km for over 3 months, covered a wide range of latitudes from the South Pole to 28¿ S, and circled around the southern hemisphere several times. On average, the positive polar conductivity (conductivity of positive ions alone) was about 15% higher than that of the negative conductivity, suggesting that differences may exist between the mobilities of positive and negative ions. Data from each polarity of polar conductivity also indicate persistent, apparently organized, short-term and localized variations, with amplitude within 30% of the mean value. In corrected geomagnetic (CGM) coordinates the conductivity variations were found to be a function of latitude but not of longitude. The total conductivity can increase 150% from low latitude to high latitude, and does remain nearly constant at latitudes above 55¿ (namely, the cosmic ray knee latitude). Calculations based on ionization theory demonstrate that the latitudinal variations in the conductivity measurements were mainly due to the latitudinal variations in incident galactic cosmic ray intensity, with only little effect from the air temperature variations. The calculations shown here also suggest that small ions (as opposed to large ions) provide the main contribution to the stratospheric conductivity. The comparisons between conductivity measurements and models show that commonly used models can underestimate the latitudinal variation by a factor of 2. In this paper the stratospheric conductivity is parameterized based on the measurements, and a simple empirical model is presented in geographic coordinates. ¿ American Geophysical Union 1996

BACKGROUND DATA FILES

Abstract

Keywords
Meteorology and Atmospheric Dynamics, Atmospheric electricity, Atmospheric Composition and Structure, Middle atmosphere—composition and chemistry, Atmospheric Composition and Structure, Ion chemistry of the atmosphere (2419, 2427), Interplanetary Physics, Cosmic rays
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit