EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Flatøy et al. 1996
Flatøy, F., Hov, Ø., Gerbig, C. and Oltmans, S.J. (1996). Model studies of the meteorology and chemical composition of the troposphere over the North Atlantic during August 18–30, 1993. Journal of Geophysical Research 101: doi: 10.1029/96JD01227. issn: 0148-0227.

A mesoscale chemistry transport model driven by meteorological data from a numerical weather prediction model is used to calculate ozone, carbon monoxide, oxides of nitrogen, and other chemical species over the North Atlantic for a 13-days period (August 18--30, 1993). The model has a circumpolar grid so that the boundary condition problems are minimized, and the influence of North American emissions on the chemical composition of the troposphere over the North Atlantic and Europe is calculated. During the first part of the period there is a zonal flow across the North Atlantic in the free troposphere; later, there is a strong north-south as well as vertical component in the advection field. The variability in the concentrations of ozone in the free troposphere is mainly caused by dynamical processes, while the chemical modification is small over an integration time of less than two weeks. A continental plume off the North American continent extending 2000 km or more into the North Atlantic is identified toward the end of the calculation period. There is then a maximum in the concentration of ozone around 1 km above the sea surface, with a much lower concentration in the marine boundary layer close to the ocean surface. Measurements from the U.K. Meteorological Office Hercules C-130 in the free troposphere off the Atlantic Provinces, across the Atlantic Ocean, and around the Azores together with ozone soundings from the Azores, Bermuda, and Iceland were used for model comparison. The calculations indicate that in the free troposphere the initial conditions as well as the upper boundary conditions are important for ozone distribution. In the upper troposphere the net change in the chemical formation rate of ozone due to a change in the NOx concentration is quite independent of the absolute value of the ozone concentration itself and, consequently, the choice of boundary conditions for ozone is not so important in this context. In the lower troposphere the change in the net chemical formation rate of ozone, which follows from a change in the concentration of NOx, shows a marked dependence on the concentration of ozone. ¿ American Geophysical Union 1996

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Troposphere—composition and chemistry, Atmospheric Composition and Structure, Pollution—urban and regional, Meteorology and Atmospheric Dynamics, Mesoscale meteorology, Meteorology and Atmospheric Dynamics, Middle atmosphere dynamics (0341, 0342)
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit