EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Avallone & Prather 1996
Avallone, L.M. and Prather, M.J. (1996). Photochemical evolution of ozone in the lower tropical stratosphere. Journal of Geophysical Research 101: doi: 10.1029/95JD03010. issn: 0148-0227.

Rarely does the atmosphere allow direct observation of the photochemical evolution of ozone. In most of the troposphere and lower stratosphere this slow chemistry cannot be understood without including much larger changes caused by the circulation. Yet in the tropical stratosphere, where ozone-poor air of tropospheric origin enters and rises slowly in near isolation, it can be demonstrated that O3 is created by dissociation of O2 at a rate consistent with current theory. The parallel photolytic destruction of the unreactive source gases (for example, N2O and CFCl3) and the consequent evolution of chemically active odd-nitrogen (NOy) and chlorine (Cly) species, however, indicate a small amount of mixing of much older, photochemically aged air from the midlatitude stratosphere into this tropical plume. ¿ American Geophysical Union 1996

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, General or miscellaneous
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit