|
Detailed Reference Information |
Greuell, W., Knap, W.H. and Smeets, P.C. (1997). Elevational changes in meteorological variables along a midlatitude glacier during summer. Journal of Geophysical Research 102: doi: 10.1029/97JD02083. issn: 0148-0227. |
|
During the summer of 1994 a glaciometeorological experiment was carried out on the Pasterze (a glacier in Austria). This paper reports on the data from six energy-balance stations ranging in altitude from 2075 to 3225 m above sea level (asl). The wind regime was dominated by the glacier wind. On the tongue, directional constancies ranged between 0.94 and 0.97. Mean 2 m wind speed and specific humidity were almost constant along the glacier. The variation in the 2 m temperature along the glacier cannot be described by the usually assumed constant decrease with elevation. On the tongue the 2 m temperature even increased with elevation. A much better description of the temperature distribution is given by a linear relation between the potential temperature and the distance along the flow line. This can be understood from a simple thermodynamic analysis of the glacier-wind layer. It is further shown that changes in clear-sky global radiation with elevation are due mainly to changes in local albedo and relief and hardly at all to changes in absolute optical path length and atmospheric water vapor and aerosol content. On the tongue the laterally averaged ice albedo is almost constant with elevation. The flux of incoming long-wave radiation during clear-sky conditions at U2 (2310 m asl) was 48 W/m2 higher than the flux at U5 (3225 m asl), on average. More than half of the difference was due to systematic differences in the shape of the temperature profile (probably the inversion depth is larger at U2). The rest can be ascribed to higher 2 m temperatures and larger amounts of upper hemisphere slopes at U2. The distributions of the meteorological variables and the parameterizations described in this paper might be incorporated in surface energy-balance models designed to simulate the surface mass balance. ¿ 1997 American Geophysical Union |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Meteorology and Atmospheric Dynamics, Boundary layer processes, Meteorology and Atmospheric Dynamics, Land/atmosphere interactions, Meteorology and Atmospheric Dynamics, Radiative processes |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|