 |
Detailed Reference Information |
Wildt, J., Kley, D., Rockel, A., Rockel, P. and Segschneider, H.J. (1997). Emission of NO from several higher plant species. Journal of Geophysical Research 102: doi: 10.1029/96JD02968. issn: 0148-0227. |
|
Emission of nitric oxide (NO) from a variety of plant species was observed in a continuously stirred tank reactor. During daytime and at NO concentrations below 1 ppb in the chamber air, NO emissions were observed for all studied nitrate-nourished plant species. A relation was found between the NO emission rates during daytime and the uptake rates of CO2. The ratio of the NO emission rate to the CO2 uptake was similar for all plants. Changes of the net rate of photosynthesis induced by variations of light intensity or changes of CO2 concentrations changed the NO emission rates correspondingly. The link between NO emissions and CO2 uptake during daytime allowed estimation of the potential of the vegetation to evolve NO on a global scale as 0.23 Tg N yr-1. Strong NO emissions during nights were observed when the nitrate concentration in the nutrient solution was enhanced. Then NO emissions were observed with flux densities comparable to the highest emission rates found from soils.¿ 1997 American Geophysical Union |
|
 |
 |
BACKGROUND DATA FILES |
|
 |
Abstract |
|
 |
|
|
|
Keywords
Atmospheric Composition and Structure, Biosphere/atmosphere interactions, Atmospheric Composition and Structure, Troposphere—composition and chemistry, Atmospheric Composition and Structure, Geochemical cycles, Oceanography, Biological and Chemical, Physicochemical properties |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
 |