EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Roberts et al. 1998
Roberts, J.M., Williams, J., Baumann, K., Buhr, M.P., Goldan, P.D., Holloway, J., Hübler, G., Kuster, W.C., McKeen, S.A., Ryerson, T.B., Trainer, M., Williams, E.J., Fehsenfeld, F.C., Bertman, S.B., Nouaime, G., Seaver, C., Grodzinsky, G., Rodgers, M. and Young, V.L. (1998). Measurements of PAN, PPN, and MPAN made during the 1994 and 1995 Nashville Intensives of the Southern Oxidant Study: Implications for regional ozone production from biogenic hydrocarbons. Journal of Geophysical Research 103: doi: 10.1029/98JD01637. issn: 0148-0227.

Isoprene and a variety of other reactive hydrocarbons are released in large quantities by vegetation in forested regions and are thought to participate in the NOx-catalyzed production of ozone, a serious air quality problem in North America and Europe <National Research Council, 1991>. The determination of the fraction of O3 formed from anthropogenic NOx and biogenic hydrocarbons (BHC) is a crucial step in the formulation of effective control strategies. Peroxymethacrylic nitric anhydride (MPAN, CH2C(CH3)C(O)OONO2) is formed almost entirely from the atmospheric oxidation of isoprene in the presence of NOx and is an excellent indicator of recent ozone production from isoprene and therefore biogenic hydrocarbons. Measurements are presented here of MPAN, peroxyacetic nitric anhydride (PAN, CH3C(O)OONO2), peroxypropionic nitric anhydride (PPN, CH3CH2C(O)OONO2) and ozone from separate data sets acquired during the 1994 and 1995 Nashville intensive studies of the Southern Oxidant Study. It was found that PAN, a general product of HC-NOx photochemistry, could be well represented as a simple linear combination of contributions from BHC and anthropogenic hydrocarbon (AHC) chemistries as indicated by MPAN and PPN, respectively. The PAN:MPAN ratios found to be characteristic of BHC-dominated chemistry ranged from 6 to 10. The PAN:PPN ratios found to be characteristic of AHC-dominated chemistry ranged from 5.8 to 7.4. These BHC and AHC attributions were used to estimate the contributions of anthropogenic and biogenic hydrocarbons to regional tropospheric ozone production, and substantial BHC-O3 (50--60 ppbv) was estimated in cases where high NOx from power plants was present in areas of high BHC emission. This estimation method provides direct evidence of significant photochemical ozone production from the oxidation of biogenic hydrocarbons in the presence of NOx. ¿ 1998 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Biosphere/atmosphere interactions, Atmospheric Composition and Structure, Constituent sources and sinks, Atmospheric Composition and Structure, Pollution—urban and regional, Atmospheric Composition and Structure, Troposphere—composition and chemistry
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit