EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Ramaswamy & Freidenreich 1998
Ramaswamy, V. and Freidenreich, S.M. (1998). A high-spectral resolution study of the near-infrared solar flux disposition in clear and overcast atmospheres. Journal of Geophysical Research 103: doi: 10.1029/98JD02379. issn: 0148-0227.

The sensitivity of the near-infrared spectral atmospheric and surface fluxes to the vertical location of clouds is investigated, including a study of factors (drop-size distribution, drop optical depth, solar zenith angle, cloud geometrical thickness, atmospheric profiles) which govern this dependence. Because of the effects of the above-cloud, in-cloud and below-cloud water vapor the atmospheric absorbed flux in each spectral band depends critically on the cloud location, with a high cloud resulting in lesser absorption and greater reflection than a low one having the same drop optical depth. The difference between a high and a low cloud forcing of atmospheric absorption increases with drop optical depth. For any optical depth, clouds with larger drops cause a greater forcing of the spectral atmospheric absorption than those with smaller ones, so high clouds can even cause an increase rather than a decrease of the atmospheric absorption relative to clear skies. In contrast, the spectral and total surface fluxes are relatively insensitive to cloud vertical location. Instead, they are determined by the drop characteristics, notably drop optical depth. This near-invariance characteristic is attributable to the fact that most of the insolation reaching the surface is in the weak water vapor spectral absorption regions; here drops dominate the radiative interactions and thus there is little dependence on cloud height. In addition, the overlap of the drop spectral features with the moderate-to-strong vapor absorption bands ensures that insolation in these regimes fails to reach the surface no matter where the cloud is located; instead, these bands contribute the most to atmospheric absorption. The near-invariant behavior of the spectral and total surface flux holds separately for a wide variety of conditions studied. As a consequence, the difference in reflection, between two columns containing clouds with the same optical depth but located at different altitudes, is approximately balanced in magnitude by the difference in the atmospheric absorption; this holds for every spectral interval whether it be a weak, moderate, or strong vapor/drop absorption band. It also follows that the net fluxes at the top and surface of overcast atmospheres do not have a general, unambiguous relationship; this is in sharp contrast to a linear relation between them in clear skies. However, under certain overcast conditions (e.g., specific vertical location of clouds and solar zenith angle), a simple linear relationship is plausible.

BACKGROUND DATA FILES

Abstract

Keywords
Meteorology and Atmospheric Dynamics, Radiative processes, Atmospheric Composition and Structure, Transmission and scattering of radiation, Atmospheric Composition and Structure, Cloud physics and chemistry, Solar Physics, Astrophysics, and Astronomy, Solar irradiance
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit