EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Khalil et al. 1998
Khalil, M.A.K., Rasmussen, R.A. and Shearer, M.J. (1998). Effects of production and oxidation processes on methane emissions from rice fields. Journal of Geophysical Research 103: doi: 10.1029/98JD01116. issn: 0148-0227.

The emission of methane from rice fields is the difference between the amount produced in the anaerobic zone below the soil and the amount oxidized in the root zone. Plants can also contribute to methane production by exuding organic compounds that may be utilized by methanogenic bacteria. We measured methane emissions from rice fields at Tu Zu in China between 1988 and 1994, which gave average emissions of about 30 mg m-2 h-1. We estimate that 45--60% of the methane produced was oxidized before reaching the atmosphere; and root exudates may have contributed of the order of 10% of the methane that was produced. The fraction of methane oxidized is low compared to experimental studies at other locations (60--85%). At Tu Zu, methane production is enhanced by continuously flooded fields and the use of large amounts of organic fertilizers; in addition, the lower oxidation rate may also contribute to the higher methane emissions observed compared to other locations. In the past, most of the attention has been devoted to the factors that affect methane production and transport, but it seems that the factors that affect methane oxidation are equally important in determining the flux, if not more so. The comparison of methane fluxes observed at different locations and the extrapolation of field measurements to accurately estimate global emissions will require a better understanding of the rate of methane oxidation in the soils and the factors that control it. ¿ 1998 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Biosphere/atmosphere interactions, Atmospheric Composition and Structure, Constituent sources and sinks, Global Change, Atmosphere (0315, 0325), Global Change, Biogeochemical processes
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit