|
Detailed Reference Information |
Mace, G.G., Ackerman, T.P., Minnis, P. and Young, D.F. (1998). Cirrus layer microphysical properties derived from surface-based millimeter radar and infrared interferometer data. Journal of Geophysical Research 103: doi: 10.1029/98JD02117. issn: 0148-0227. |
|
Observational data regarding the properties of cirrus clouds are needed to aid in the development of accurate, physically based parameterizations in climate models. The Atmospheric Radiation Measurement (ARM) program, sponsored by the U.S. Department of Energy, is providing continuous observations of cirrus clouds with a suite of instrumentation at several locales. In this paper, we describe an algorithm to derive the microphysical properties of optically thin cirrus clouds. This algorithm uses radar reflectivity and infrared emission spectra from an interferometer and is tailored for the specific instruments at the ARM sites. We present in situ validation of the technique and examine a cirrus case study to illustrate the sensitivity of the algorithm. In the case study, solar fluxes calculated from the retrieved microphysical parameters are compared to observed fluxes to build confidence in the algorithm results. Comparison of the retrieved quantities to microphysical parameters retrieved from satellite data is also presented. ¿ 1998 American Geophysical Union |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Global Change, Instruments and techniques, Global Change, Remote sensing, Atmospheric Composition and Structure, Cloud physics and chemistry |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|