EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Rinsland et al. 1999
Rinsland, C.P., Salawitch, R.J., Gunson, M.R., Solomon, S., Zander, R., Mahieu, E., Goldman, A., Newchurch, M.J., Irion, F.W. and Chang, A.Y. (1999). Polar stratospheric descent of NOy and CO and Arctic denitrification during winter 1992–1993. Journal of Geophysical Research 104: doi: 10.1029/1998JD100034. issn: 0148-0227.

Observations inside the November 1994 Antarctic stratospheric vortex and inside the April 1993 remnant Arctic stratospheric vortex by the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier transform spectrometer are reported. In both instances, elevated volume mixing ratios (VMRs) of carbon monoxide (CO) were measured. A peak Antarctic CO VMR of 60 ppbv (where 1 ppbv=10-9 per unit volume) was measured at a potential temperature (&THgr;) of 710 K (~27 km), about 1 km below the altitude of a pocket of elevated NOy (total reactive nitrogen) at a deep minimum in N2O(<5 ppbv). The Arctic observations also show a region of elevated vortex CO with a peak VMR of 90 ppbv at 630--670 K (~25 km) but no corresponding enhancement in NOy, perhaps because of stronger dynamical activity in the northern hemisphere polar winter and/or interannual variability in the production of mesospheric or lower thermospheric NO. By comparing vortex and extravortex observations of NOy obtained at the same N2O VMR, Arctic vortex denitrification of 5¿2 ppbv at 470 K (~18 km) is inferred. We show that our conclusion of substantial Arctic winter 1992--1993 denitrification is robust by comparing our extravortex observations with previous polar measurements obtained over a wide range of winter conditions. Correlations of NOy with N2O measured at the same &THgr; by ATMOS in the Arctic vortex and at midlatitudes on board the ER-2 aircraft several weeks later lie along the same mixing line. The result demonstrates the consistency of the two data sets and confirms that the ER-2 sampled fragments of the denitrified Arctic vortex following its breakup. An analysis of the ATMOS Arctic measurements of total hydrogen shows no evidence for significant dehydration inside the vortex. ¿ 1999 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Constituent sources and sinks, Atmospheric Composition and Structure, Middle atmosphere—composition and chemistry, Atmospheric Composition and Structure, Middle atmosphere—constituent transport and chemistry, Meteorology and Atmospheric Dynamics, Polar meteorology, Meteorology and Atmospheric Dynamics, Numerical modeling and data assimilation
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit