EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Stein et al. 1999
Stein, B., Wedekind, C., Wille, H., Immler, F., Müller, M., Wöste, L., del Guasta, M., Morandi, M., Stefanutti, L., Antonelli, A., Agostini, P., Rizi, V., Readelli, G., Mitev, V., Matthey, R., Kivi, R. and Kyrö, E. (1999). Optical classification, existence temperatures, and coexistence of different polar stratospheric cloud types. Journal of Geophysical Research 104: doi: 10.1029/1999JD900064. issn: 0148-0227.

Multispectral lidar measurements of polar stratospheric clouds (PSCs) from two winter campaigns in 1994/1995 and 1996/1997 at Sodankyl¿, Finland, have been evaluated together with temperature data from local radiosondes to find optical parameters for a PSC classification of different particle types and their existence temperatures. Precise depolarization measurements show that both solid and liquid particles exist below the NAT (nitric acid trihydrate) temperature. A comparison of temperatures at the PSC base and at the cloud top shows a good agreement with the NAT-existence temperature for solid type Ia clouds and a 3--4 K lower temperature for liquid type Ib clouds. The two particle families are therefore consistent with solid NAT particle formation and condensational growth of HNO3, H2O and H2SO4 liquid ternary solutions. The coexistence of solid and liquid particles has been observed by means of the temporal development of parallel and perpendicular polarized lidar signals. These time series of subsequent lidar measurements show stronger and faster fluctuations in the liquid particle mode compared to the solid particles and thus indicate a higher sensitivity toward temperature fluctuations for the liquid PSCs. While the optical properties of most observations are consistent with the definition of PSC type Ia (solid) and type Ib (liquid) clouds, a third type has been observed which does not fit into the current type Ia/Ib optical classification. This cloud type consists of solid particles but has a higher backscatter than type Ia PSC. ¿ 1999 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Aerosols and particles (0345, 4801), Atmospheric Composition and Structure, Cloud physics and chemistry, Atmospheric Composition and Structure, Middle atmosphere—composition and chemistry, Atmospheric Composition and Structure, Pressure, density, and temperature, Meteorology and Atmospheric Dynamics, Polar meteorology, Meteorology and Atmospheric Dynamics, Precipitation
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit