|
Detailed Reference Information |
Ball, S.M., Hanson, D.R., Eisele, F.L. and McMurry, P.H. (1999). Laboratory studies of particle nucleation: Initial results for H2SO4, H2O, and NH3 vapors. Journal of Geophysical Research 104: doi: 10.1029/1999JD900411. issn: 0148-0227. |
|
Particle formation in the binary H2SO4-H2O vapor system was studied at 295 K in a series of experiments employing a flow reactor. The concentration of H2SO4 was detected by chemical ionization mass spectrometry, and an ultrafine particle condensation nucleus counter was used to count the newly nucleated particles. Results yield a particle formation rate that is approximately proportional to <H2SO4> raised to the eighth power and to <H2O> raised to the fifth power. The power dependencies measured here are significantly different from those determined in previous experimental work, and furthermore, the water dependence is markedly different from that predicted from current theories. The effect of adding ammonia vapor to the binary system was investigated; concentrations of NH3 in the many tens of parts per trillion by volume range were observed to promote dramatically the rate of particle nucleation. ¿ 1999 American Geophysical Union |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Atmospheric Composition and Structure, Aerosols and particles (0345, 4801), Atmospheric Composition and Structure, Chemical kinetic and photochemical properties, Atmospheric Composition and Structure, Constituent sources and sinks, Atmospheric Composition and Structure, Troposphere—composition and chemistry, Atmospheric Composition and Structure, Cloud physics and chemistry, Meteorology and Atmospheric Dynamics, Polar meteorology, Meteorology and Atmospheric Dynamics, Precipitation |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|