EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Hales & Emerson 1996
Hales, B. and Emerson, S. (1996). Calcite dissolution in sediments of the Ontong-Java Plateau: In situ measurements of pore water O2 and pH. Global Biogeochemical Cycles 10: doi: 10.1029/96GB01522. issn: 0886-6236.

We present in situ electrode measurements of sediment resistivity, pore water oxygen, and pore water pH from three stations between 2300 and 3000 m depth on the Ontong-Java Plateau in the western equatorial Pacific. One of these stations is also the site of a concurrent benthic chamber incubation experiment [Jahnke et al., 1994]. The pore water oxygen data and a steady state diffusion and reaction model constrain the depth-dependent rate of oxic respiration in the sediments and imply a diffusive flux of oxygen to the sediments of 10--21 &mgr;mol cm-2 yr-1. Given these respiration rates, the pore water pH data cannot be explained without calcite dissolution driven by metabolically produced CO2. The dissolution necessary to explain the observations, quantified by a statistical approach, is 3.5--6 &mgr;mol cm-2 yr-1, which corresponds to at least 20--40% of the calcite rain to these sediments. Over 65% of the total dissolution is driven by metabolic CO2. Oxygen fluxes and net calcite dissolution constrained by the electrode data are compatible with the benthic chamber measurements of Jahnke et al. [1994]. The dissolution flux, while a significant part of the early diagenesis of calcite in these sediments, is less than would be predicted by earlier models of dissolution, and Jahnke et al. [1994] probably could not distinguish it from zero with the benthic chamber technique. The dissolution rates found in this study are lower than previous estimates because the respiration reaction is concentrated near the sediment-water interface, and the calcite dissolution rate constants are very small. The statistical evaluation of the pore water pH data and model constrain the calcite dissolution rate constant to 0.005--0.16% d-1, following the general trend of lower values determined by in situ techniques rather than by laboratory methods. ¿ American Geophysical Union 1996

BACKGROUND DATA FILES

Abstract

Keywords
Oceanography, Biological and Chemical, Inorganic marine chemistry, Oceanography, General, Numerical modeling
Journal
Global Biogeochemical Cycles
http://www.agu.org/journals/gb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit