|
Detailed Reference Information |
Takigawa, M., Takahashi, M. and Akiyoshi, H. (1999). Simulation of ozone and other chemical species using a Center for Climate System Research/National Institute for Environmental Studies atmospheric GCM with coupled stratospheric chemistry. Journal of Geophysical Research 104: doi: 10.1029/1998JD100105. issn: 0148-0227. |
|
A new middle-atmosphere general circulation model that includes the photochemistry for ozone and other chemical species (19 photolysis and 52 chemical reactions) has been constructed. The horizontal spectral resolution is T21 (about a 600 km horizontal grid spacing) with 30 layers in the vertical. Preliminary results from over 10 years of model integration are presented. The distributions of long-lived species, such as N2O, are rather similar to those of satellite observations in a climatological sense, although the sharp meridional gradient around 30¿ latitude is not well simulated in the model stratosphere. Neither is the double peak structure that occurs during equinox periods well reproduced. This result is consistent with the fact that the westerly phase of the semiannual oscillation is weak in this model. This may be due to the coarse resolution of the model. The seasonal evolution of the ozone column abundance is quite realistic, although the model slightly underestimates total tropical ozone. The model also underestimates ozone amounts around the equatorial tropopause. The February midlatitude number density of OH in the model upper stratosphere is about 1.8¿107 cm-3, which is slightly less than that observed. The horizontal distributions of short-lived species, such as NO, suggest a reasonable model diurnal variation. The model has a cold bias of about 25 K in the lower stratospheric Northern Hemisphere winter and 5 K in the Southern Hemisphere winter. The model residual mean vertical velocity in the equatorial lower stratosphere is too weak (about 0.1 mm/s) during the Northern Hemisphere winter, compared with the observed (about 0.4 mm/s), while the model temperature around the equatorial tropopause is cooler than that observed. ¿ 1999 American Geophysical Union |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Atmospheric Composition and Structure, Middle atmosphere—composition and chemistry, Atmospheric Composition and Structure, Middle atmosphere—constituent transport and chemistry, Atmospheric Composition and Structure, Instruments and techniques, Mathematical Geophysics, Modeling, Hydrology, Evapotranspiration, Information Related to Geographic Region, Antarctica |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|