EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Lee et al. 1999
Lee, X., Fuentes, J.D., Staebler, R.M. and Neumann, H.H. (1999). Long-term observation of the atmospheric exchange of CO2 with a temperate deciduous forest in southern Ontario, Canada. Journal of Geophysical Research 104: doi: 10.1029/1999JD900227. issn: 0148-0227.

This paper reports the results of the analysis of eddy covariance CO2 data obtained at a successional forest of maple and aspen at Camp Borden in southern Ontario, Canada, between July 1995 and December 1997. Main findings are (1) The Michaelis-Menton model explains >50--65% of the observed variance of the daytime net ecosystem carbon exchange (NEE) during the growing season; leaf wetness appears to be an important variable contributing to the remaining variance. (2) The whole-ecosystem respiration rate as a function of the 5-cm soil temperature shows a seasonal hysteresis (higher rate in the later part of the year), suggesting a nonnegligible contribution by deep soil/roots and the influence of litter age. (3) There is evidence of photosynthetic activities immediately after the spring snowmelt/soil warming, but the daily NEE did not switch sign till about 40 days later; our best estimates of the annual net carbon uptake by the ecosystem (net ecosystem production (NEP)) are -1.0, -1.2, and -2.8 t C ha-1 yr-1 for the periods July 19, 1995, to July 18, 1996, January 1 to December 31, 1996, and January 1 to December 31, 1997, respectively, with an uncertainty of ¿0.4 t C ha-1 yr-1. (4) The higher NEP value in 1997 than in 1996 was caused by lower growing season soil temperature, cooler spring and fall transitional periods, and higher photon flux in 1997; possible enhancement in canopy photosynthetic capacity may also have played a role. In addition, three main sources of uncertainties, data gap, fetch, and mass flow, are discussed. It is suggested that collective use of the methods available for assessing the whole-ecosystem respiration (friction velocity threshold, mass flow theory, and dark respiration from the forest light response) may increase the confidence level of NEP estimates. ¿ 1999 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Biosphere/atmosphere interactions, Global Change, Biogeochemical processes, Global Change, Atmosphere (0315, 0325), Meteorology and Atmospheric Dynamics, Radiative processes, Meteorology and Atmospheric Dynamics, Stratosphere/troposphere interactions
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit