EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Leung et al. 1999
Leung, L.R., Ghan, S.J., Zhao, Z.-C., Luo, Y., Wang, W.-C. and Wei, H.-L. (1999). Intercomparison of regional climate simulations of the 1991 summer monsoon in eastern Asia. Journal of Geophysical Research 104: doi: 10.1029/1998JD200016. issn: 0148-0227.

Regional climate models have become a common research tool for downscaling global climate simulations. To further examine their usefulness for climate studies and the impacts that different physical parameterizations have on the simulations, an intercomparison experiment has been performed where three regional climate models are used to simulate an extreme flood event. Although the dynamical components of the models are almost identical, the physical parameterizations used to represent clouds, radiative transfer, turbulence transport, and surface processes are very different. The models were used to simulate the heavy precipitation during the 1991 summer which caused severe flooding over the Yangtze River in China. This extreme event is selected to highlight the differences among regional climate models. Results from the intercomparison show that all models simulated the gross flood conditions reasonably well, although each model reproduced the observed rainband to varying degrees, and significant differences are found in the simulated energy and hydrological cycles, especially over cloudy areas. Through detailed analyses of model simulations at different spatial and temporal scales, several reasons are found to cause the departure of model simulations from each other. These include the simulation of the amount and vertical distribution of clouds, the treatment of cloud-radiative feedbacks, and the representation of land surface processes. This study suggests that aspects other than surface temperature and precipitation of the regional climate simulations need to be more carefully evaluated. One specially important evaluation criterion is the radiation balance which has serious implications for long-term climate simulations. ¿ 1998 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Meteorology and Atmospheric Dynamics, Mesoscale meteorology, Meteorology and Atmospheric Dynamics, Precipitation, Meteorology and Atmospheric Dynamics, Numerical modeling and data assimilation, Atmospheric Composition and Structure, Constituent sources and sinks
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit