EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Grenfell et al. 1999
Grenfell, J.L., Harrison, R.M., Allen, A.G., Shi, J.P., Penkett, S.A., O'Dowd, C.D., Smith, M.H., Hill, M.K., Robertson, L., Hewitt, C.N., Davison, B., Lewis, A.C., Creasey, D.J., Heard, D.E., Hebestreit, K., Alicke, B. and James, J. (1999). An analysis of rapid increases in condensation nuclei concentrations at a remote coastal site in western Ireland. Journal of Geophysical Research 104. doi: 10.1029/1999JD900096. issn: 0148-0227.

Massive bursts in condensation nuclei (CN) concentration were recorded at a remote site on the west Irish coast during campaigns in summer 1996 and spring/summer 1997. Number concentrations of 3--7 nm diameter CN were observed to rise daily from 102--103 up to ~105/cm3 for 1--3 hours. Data were collected as part of the Atmospheric Chemistry Studies in the Oceanic Environment program. In a previous paper the burst phenomenon was linked to the movement of the tide, and it was suggested that enhanced biogenic emissions occurred near low tide with concomitant rapid homogeneous gas phase CN formation. In this paper possible chemical mechanisms for the burst phenomenon are investigated. Two approaches are adopted. First, by assuming a 20:80 sulfate:water molar composition and calculating the number distribution using data from condensation particle counters, the total mass of CN formed during a burst is evaluated. This is compared with that mass of sulfate produced by OH-initiated dimethyl sulfide (DMS) oxidation. The procedure is termed mass balance. Second, a variety of chemical species are coplotted with tidal height. DMS oxidation is not believed to play a major role in CN formation at this site because (1) the mass balance calculations imply ambient DMS concentrations higher than those observed, and (2) gas phase HCl, HNO3, SO2, and NH3 did not exhibit any discernible correlation with tidal height. Further, none of the suite of observed nonmethane hydrocarbons or DMS showed a tidal relation. No mechanism has to date been convincingly identified for the burst phenomenon. ¿ 1999 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Aerosols and particles (0345, 4801), Atmospheric Composition and Structure, Air/sea constituent fluxes (3339, 4504), Atmospheric Composition and Structure, Troposphere—composition and chemistry, Atmospheric Composition and Structure, Cloud physics and chemistry, Meteorology and Atmospheric Dynamics, Polar meteorology, Meteorology and Atmospheric Dynamics, Precipitation
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit