EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Korhonen et al. 1999
Korhonen, P., Kulmala, M., Laaksonen, A., Viisanen, Y., McGraw, R. and Seinfeld, J.H. (1999). Ternary nucleation of H2SO4, NH3, and H2O in the atmosphere. Journal of Geophysical Research 104: doi: 10.1029/1999JD900784. issn: 0148-0227.

Classical theory of binary homogeneous nucleation is extended to the ternary system H2SO4-NH3-H2O. For NH3 mixing ratios exceeding about 1 ppt, the presence of NH3 enhances the binary H2SO4-H2O nucleation rate by several orders of magnitude. The Gibbs free energies of formation of the critical H2SO4-NH3-H2O cluster, as calculated by two independent approaches, are in substantial agreement. The finding that the H2SO4-NH3-H2O ternary nucleation rate is independent of relative humidity over a large range of H2SO4 concentrations has wide atmospheric consequences. The limiting component for ternary H2SO4-NH3-H2O nucleation is, as in the binary H2SO4-H2O case, H2SO4; however, the H2SO4 concentration needed to achieve significant nucleation rates is several orders of magnitude below that required in the binary case. ¿ 1999 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Aerosols and particles (0345, 4801), Atmospheric Composition and Structure, Chemical kinetic and photochemical properties, Atmospheric Composition and Structure, Constituent sources and sinks, Atmospheric Composition and Structure, Troposphere—composition and chemistry, Atmospheric Composition and Structure, Cloud physics and chemistry, Meteorology and Atmospheric Dynamics, Polar meteorology, Meteorology and Atmospheric Dynamics, Precipitation
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit