EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Lamanna & Goldstein 1999
Lamanna, M.S. and Goldstein, A.H. (1999). In situ measurements of C2-C10 volatile organic compounds above a Sierra Nevada ponderosa pine plantation. Journal of Geophysical Research 104: doi: 10.1029/1999JD900289. issn: 0148-0227.

A fully automated gas chromatograph-flame ionization detector system was designed and built to measure ambient concentrations of C2--C10 volatile organic compounds, including many oxygenated compounds, without using liquid cryogen. It was deployed at Blodgett Forest Research Station in Georgetown, California, 38¿53'42.9N, 120¿37'57.9W, 1315 m elevation. More than 900 in situ measurements were made above a ponderosa pine canopy at 40-min intervals, continuously from July 2 through August 1, 1997. Factor analysis and observed temporal patterns were used to categorize sources for measured compounds as biogenic or anthropogenic or both. Compounds that were clearly biogenic included methylbutenol, isoprene and its oxidation products (methacrolein and methyl vinyl ketone), and terpenes (α-pinene, 3-carene, d-limonene). Other compounds were partially biogenic, including acetone, ethene, propene, hexanal, acetaldehyde, and methanol. Hydroxyl radical (OH) loss rates were dominated by the clearly biogenic compounds, accounting for 70% of the loss under mean midday conditions. The most important single compounds were isoprene (33%) and methylbutenol (21%). These two compounds were dominant under all conditions, including the coldest and most polluted days. Under the most polluted conditions, acetaldehyde became very important, accounting for 13% of the total. Total OH loss rates were highly correlated with temperature because emissions of biogenic compounds, which dominate OH loss, are strongly temperature dependent. Much of the research on biogenic volatile organic compounds has focused on isoprene and terpenes. Our results suggest that quantifying and understanding factors controlling biogenic emissions of other compounds such as methylbutenol, acetone, hexanal, methanol, and acetaldehyde are critical for improving our understanding of regional photochemistry. ¿ 1999 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Biosphere/atmosphere interactions, Atmospheric Composition and Structure, Constituent sources and sinks, Atmospheric Composition and Structure, Pollution—urban and regional, Atmospheric Composition and Structure, Troposphere—composition and chemistry, Global Change, Atmosphere (0315, 0325), Meteorology and Atmospheric Dynamics, Radiative processes, Meteorology and Atmospheric Dynamics, Stratosphere/troposphere interactions
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit