EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Bouwman et al. 1997
Bouwman, A.F., Lee, D.S., Asman, W.A.H., Dentener, F.J., Van Der Hoek, K.W. and Olivier, J.G.J. (1997). A global high-resolution emission inventory for ammonia. Global Biogeochemical Cycles 11: doi: 10.1029/97GB02266. issn: 0886-6236.

A global emissions inventory for ammonia (NH3) has been compiled for the main known sources on a 1¿¿1¿ grid, suitable for input to global atmospheric models. The estimated global emission for 1990 is about 54 Tg N yr-1. The major sources identified include excreta from domestic animals (21.6 Tg N yr-1) and wild animals (0.1 Tg N yr-1), use of synthetic N fertilizers (9.0 Tg N yr-1), oceans (8.2 Tg N yr-1), biomass burning (5.9 Tg N yr-1), crops (3.6 Tg N yr-1), human population and pets (2.6 Tg N yr-1), soils under natural vegetation (2.4 Tg N yr-1), industrial processes (0.2 Tg N yr-1), and fossil fuels (0.1 Tg N yr-1). About half of the global emission comes from Asia, and about 70% is related to food production. The regions with highest emission rates are located in Europe, the Indian subcontinent, and China, reflecting the patterns of animal densities and type and intensity of synthetic fertilizer use. The overall uncertainty in the global emission estimate is 25%, while the uncertainty in regional emissions is much greater. As the global human population will show considerable growth in the coming decades, food production and associated NH3 emissions are likely to increase as well.

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Geochemical cycles, Atmospheric Composition and Structure, Biosphere/atmosphere interactions
Journal
Global Biogeochemical Cycles
http://www.agu.org/journals/gb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit