EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Zuelsdorf et al. 2000
Zuelsdorf, R.S., Franz, R.C., Strangeway, R.J. and Russell, C.T. (2000). Determining the source of strong LF/VLF TIPP events: Implications for association with NPBPs and NNBPs. Journal of Geophysical Research 105: doi: 10.1029/2000JD900214. issn: 0148-0227.

Transionospheric pulse pairs (TIPPs) as detected by the Blackbeard VHF radio instrument onboard the ALEXIS satellite have been shown to correlate with pulses detected by stations in the National Lightning Detection Network (NLDN). The short peak-to-zero time of these NLDN-detected pulses (<10 μs) are indicative of interior cloud processes, as opposed to the longer pulses associated with cloud-to-ground discharges. TIPPs are most probably generated by the same discharge responsible for narrow bipolar pulses (NBPs), which have been detected on the ground but are also believed to be generated entirely inside the cloud. Here we report on five TIPPs detected by Blackbeard that are correlated with cloud-generated pulses detected by multiple stations in the NLDN during powerful storms. Previously, a maximum of two stations at a time showed such a correlation. Given the greater area of detection, these pulses radiate more powerfully in the LF/VLF frequencies than those previously detected as TIPPs by Blackbeard. We are able to place the sources of the TIPPs in Hurricane Fausto off the coast of Mexico, and in a remnant of the same storm eight days later over Texas. The heights of the sources are higher than those previously determined for TIPPs. The higher altitudes and the greater power of the TIPP-correlating signals may be related to the intensity of the storms. Two of these five TIPPs were also correlated with the ground detection of HF signals, and the TIPPs and HF signals were determined to originate from the same source region. These HF signals are similar to those previously recorded with the field change signature of narrow positive bipolar pulses (NPBPs), but we find that both polarities are detected, four out of the five being negative. This indicates that TIPPs correlate with narrow negative bipolar pulses (NNBPs) as well as NPBPs. The detection of NNBPs, which has previously been much rarer than NPBPs, may also be related to the intensity of the storms and the resultant higher-altitude sources. ¿ 2000 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Cloud physics and chemistry, Electromagnetics, Wave propagation, Meteorology and Atmospheric Dynamics, Atmospheric electricity, Meteorology and Atmospheric Dynamics, Lightning
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit