EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Bridgeman et al. 2000
Bridgeman, C.H., Pyle, J.A. and Shallcross, D.E. (2000). A three-dimensional model calculation of the ozone depletion potential of 1-bromopropane (1-C3H7Br). Journal of Geophysical Research 105: doi: 10.1029/2000JD900293. issn: 0148-0227.

A three-dimensional chemical transport model has been used to investigate factors affecting the potential impact of a short-lived bromine compound on lower stratospheric ozone. The model is used to calculate the ozone depletion potential (ODP) of 1-bromopropane employing a previously used empirical approach, which depends on the lifetime of the compound and the amount reaching the stratosphere. We show that this approach may be unsuitable for very short-lived compounds. Indeed, for a short-lived compound the definition of the lifetime itself is ambiguous. The lifetime varies with season, region of emission, and depends on the method of calculation. A series of tracer experiments reveals that the amount of bromine reaching the stratosphere, and hence the calculated ODP, can also be highly dependent on the distribution of the surface emissions. Where emissions are located solely in the equatorial region, the calculated ODP is over 3 times greater than when the emissions are centered over Europe. Vigorous convection in the tropics can lift the compound rapidly into the lower stratosphere where the bromine can be released and contribute to ozone destruction. For surface releases at higher latitudes the lifetime in the troposphere is significant compared with the time to reach the stratosphere and a smaller ODP is calculated. This highlights a problem in calculating ODPs for short-lived species. Uncertainties in the degradation mechanisms for short-lived compounds, and the subsequent fate of the degradation intermediates, add further uncertainty to calculations of their impact on the stratosphere. Additional methods need to be developed to assess their potential impact on the stratosphere. ¿ 2000 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Constituent sources and sinks, Atmospheric Composition and Structure, Middle atmosphere—composition and chemistry, Atmospheric Composition and Structure, Middle atmosphere—constituent transport and chemistry, Mathematical Geophysics, Modeling, Atmospheric Composition and Structure, Cloud physics and chemistry
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit