EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Limbeck & Puxbaum 2000
Limbeck, A. and Puxbaum, H. (2000). Dependence of in-cloud scavenging of polar organic aerosol compounds on the water solubility. Journal of Geophysical Research 105: doi: 10.1029/2000JD900123. issn: 0148-0227.

In spring 1997 at the Sonnblick Observatory, located at 3106 m elevation in the Austrian Alps, interstitial aerosol and cloud water samples were simultaneously collected in supercooled convective clouds. These samples were analyzed for their polar organic composition using a newly developed analytical method that allows the simultaneous determination of dicarboxylic acids, monocarboxylic acids, and other polar organic constituents. Using the obtained data set, in-cloud scavenging efficiencies (&egr;) for individual polar organic compounds were calculated. For the different organic substances, scavenging efficiencies ranged from 0.16 to 0.98, compared with sulfate, which exhibited an average scavenging efficiency of 0.94. For dicarboxylic acids, scavenging efficiencies (average of about 0.8) were of the same order as for sulfate. Distinctly lower values (average of about 0.6) were achieved for polar aromatic compounds like phthalic acid or diisobutylphenol. The lowest scavenging efficiencies (average about 0.4) were found for alcohols and monocarboxylic acids. Thus we found in the Sonnblick cloud experiment that more polar organic aerosol constituents are more efficiently scavenged into cloud droplets than less polar compounds. In addition, the scavenging efficiencies exhibited a dependence on the solubilities of the examined compounds. For highly water soluble compounds (1--1000 g L-1) a decrease of the water solubility for an individual compound leads to a decrease in the scavenging efficiency for this compound. For poorly soluble substances with water solubilities below 1 g L-1, a near-constant value for the scavenging efficiency was found, indicating that their scavenging behavior is then dominated by the scavenging of the bulk noncarbonate carbon independent of the physical and chemical properties of the individual substances. ¿ 2000 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Aerosols and particles (0345, 4801), Atmospheric Composition and Structure, Cloud physics and chemistry, Atmospheric Composition and Structure, Troposphere—composition and chemistry
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit