|
Detailed Reference Information |
Folkins, I. and Chatfield, R. (2000). Impact of acetone on ozone production and OH in the upper troposphere at high NOx. Journal of Geophysical Research 105: doi: 10.1029/2000JD900067. issn: 0148-0227. |
|
The impact of acetone (or any HOx source) on tropospheric photochemistry is largest in the high NOx regime. The fractional increases in OH and ozone production associated with acetone increase rapidly with NOx when NOx mixing ratios become larger than 300 parts per trillion by volume (pptv). This occurs in part because the HOx yield of acetone is larger at higher NOx mixing ratios, going from about 1HOx at NOx~10 pptv to 3HOx at NOx~1000 pptv. We also investigate the effect of acetone on the partitioning of the NOy family. Acetone increases the conversion of NO to NO2, HNO4, HNO3, and peroxyacetylnitrate (PAN). Conversion of NO to PAN dominates at low NOx, while conversion of NO to HNO3 dominates at high NOx. These NO decreases significantly diminish the increases in OH and ozone production one would otherwise anticipate from the increases in HO2. In particular, acetone can be expected to reduce ozone production for NOx<25 pptv. We also show that most of the changes in species concentrations arising from the introduction of a HOx source can be accurately predicted using simple expressions derived from linear perturbation theory. ¿ 2000 American Geophysical Union |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Atmospheric Composition and Structure, Constituent sources and sinks, Atmospheric Composition and Structure, Troposphere—composition and chemistry, Atmospheric Composition and Structure, Troposphere—constituent transport and chemistry, Mathematical Geophysics, Modeling, Atmospheric Composition and Structure, Cloud physics and chemistry |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|