EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Honrath et al. 2000
Honrath, R.E., Guo, S., Peterson, M.C., Dziobak, M.P., Dibb, J.E. and Arsenault, M.A. (2000). Photochemical production of gas phase NOx from ice crystal NO3 -. Journal of Geophysical Research 105: doi: 10.1029/2000JD900361. issn: 0148-0227.

Recent measurements have demonstrated that sunlight irradiation of snow results in the release of significant amounts of gas phase NOx (NO+NO2). We report here the results of a series of experiments designed to test the hypothesis that the observed NOx production is the result of nitrate photolysis. Snow produced from deionized water with and without the addition of nitrate was exposed to natural sunlight in an outdoor flow chamber. While NOx release from snow produced without added NO3- was minimal, the addition of 100 μM NO3- resulted in the release of >500 pptv NOx in a 9 standard liter per minute (sLpm) flow of synthetic air exposed to the snow for 10--20 s; the rate of release was highly correlated with solar radiation. Further addition of radical trap reagents resulted in greatly increased NOx production (to >8 ppbv in a flow of 20 sLpm). In snow produced from deionized water plus sodium nitrate, production of NO2 dominated that of NO. The reverse was true in the presence of radical trap reagents; this suggests sensitivity of the NOx release mechanism to pH, as a basic compound was added, or to the presence of free radical scavengers. A mechanism for NOx release from NO3- photolysis consistent with these observations is presented. These results support previous suggestions that surface NOx release may have a significant impact on boundary layer photochemistry in snow-covered regions and that nitrate photolysis on cirrus cloud particles may result in the release of gas phase NOx. A potential for pH-dependent impacts on ice core records of oxidants and oxidized compounds is also suggested. ¿ 2000 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Chemical kinetic and photochemical properties, Atmospheric Composition and Structure, Constituent sources and sinks, Atmospheric Composition and Structure, Troposphere—composition and chemistry, Atmospheric Composition and Structure, Cloud physics and chemistry
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit