EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
James et al. 2000
James, J.D., Harrison, R.M., Savage, N.H., Allen, A.G., Grenfell, J.L., Allan, B.J., Plane, J.M.C., Hewitt, C.N., Davison, B. and Robertson, L. (2000). Quasi-Lagrangian investigation into dimethyl sulfide oxidation in maritime air using a combination of measurements and model. Journal of Geophysical Research 105: doi: 10.1029/2000JD900375. issn: 0148-0227.

Using a combination of field measurement data and a modified photochemical box model, strong evidence is presented to suggest that the rate of daytime oxidation of dimethyl sulfide (DMS) by OH radicals is insufficient to describe the measured conversion. Quasi-Lagrangian measurements were made at two sites in the eastern Atlantic (Research Vessel and Mace Head Research Station, Ireland) as part of the Atmospheric Chemistry Studies in the Oceanic Environment (ACSOE) program. Periods of connected flow between the two sites were identified, air parcel transit times were estimated, and measurements of the main DMS oxidation products (MSA, SO2, and nss-SO42-) were compared with model predictions to establish whether the model's chemical mechanism could account for observed changes. The main finding was that during daytime periods with maritime air masses, the model failed to predict a sufficient increase in DMS oxidation products during the estimated transit time. This was despite a tendency to overprediction of the progress of nitrogen chemistry during air mass advection, and independent checks on the model estimates of hydroxyl radical concentrations through measurements. In the light of this, the involvement of halogen species (most probably halogen oxides) or heterogeneous oxidation processes is tentatively suggested as the cause of enhanced daytime DMS oxidation in the marine boundary layer (MBL). Increasing the rate constant for the OH+DMS reaction by a factor of 3.3 (as a crude way of simulating parallel channels of DMS oxidation) permitted model results to reproduce the measurements very much more closely. ¿ 2000 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Aerosols and particles (0345, 4801), Atmospheric Composition and Structure, Chemical kinetic and photochemical properties, Atmospheric Composition and Structure, Troposphere—composition and chemistry, Mathematical Geophysics, Modeling
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit