EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Barth et al. 2000
Barth, M.C., Rasch, P.J., Kiehl, J.T., Benkovitz, C.M. and Schwartz, S.E. (2000). Sulfur chemistry in the National Center for Atmospheric Research Community Climate Model: Description, evaluation, features, and sensitivity to aqueous chemistry. Journal of Geophysical Research 105: doi: 10.1029/1999JD900773. issn: 0148-0227.

Sulfur chemistry has been incorporated in the National Center for Atmospheric Research Community Climate Model in an internally consistent manner with other parameterizations in the model. The model predicts mixing ratios of dimethylsulfide (DMS), SO2, SO42-, H2O2. Processes that control the mixing ratio of these species include the emissions of DMS and SO2, transport of each species, gas- and aqueous-phase chemistry, wet deposition, and dry deposition of species. Modeled concentrations agree quite well with observations for DMS and H2O2, fairly well for SO2, and not as well for SO42-. The modeled SO42- tends to underestimate observed SO42- at the surface and overestimate observations in the upper troposphere. The SO2 and SO42- species were tagged according to the chemical production pathway and whether the sulfur was of anthropogenic or biogenic origin. Although aqueous-phase reactions in cloud accounted for 81% of the sulfate production rate, only ~50--60% of the sulfate burden in the troposphere was derived from cloud chemistry. Because cloud chemistry is an important source of sulfate in the troposphere, the importance of H2O2 concentrations and pH values was investigated. When prescribing H2O2 concentrations to clear-sky values instead of predicting H2O2, the global-averaged, annual-averaged in-cloud production of sulfate increased. Setting the pH of the drops to 4.5 also increased the in-cloud production of sulfate. In both sensitivity simulations, the increased in-cloud production of sulfate decreased the burden of sulfate because less SO2 was available for gas-phase conversion, which contributes more efficiently to the tropospheric sulfate burden than does aqueous-phase conversion. ¿ 2000 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Biosphere/atmosphere interactions, Atmospheric Composition and Structure, Cloud physics and chemistry, Atmospheric Composition and Structure, Troposphere—composition and chemistry, Atmospheric Composition and Structure, Troposphere—constituent transport and chemistry
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit