EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Qin et al. 2001
Qin, W., Herman, J.R. and Ahmad, Z. (2001). A fast, accurate algorithm to account for non-Lambertian surface effects on TOA radiance. Journal of Geophysical Research 106: doi: 10.1029/2001JD900215. issn: 0148-0227.

Surface bidirectional reflectance distribution function (BRDF) influences both the radiance just above the surface and that emerging from the top of the atmosphere (TOA). In this study we propose a new, fast, and accurate algorithm CASBIR (correction for anisotropic surface bidirectional reflection) to account for such influences on TOA radiance. This new algorithm is based on four-stream theory that separates the radiation field into direct and diffuse components in both upwelling and downwelling directions. Such a separation is important because the direct component accounts for a substantial portion of incident radiation under a clear sky, and the BRDF effect is strongest in the reflection of the incident direct radiation. The model is validated by comparison with a full-scale, vector radiative transfer model for the atmosphere-surface system <Ahmad and Fraser, 1982> for wavelengths from UV to near-IR over three typical but very different surface types. The result demonstrates that CASBIR is accurate for all solar and viewing zenith and azimuth angles considered, with overall relative difference of less than 0.7%. Application of this algorithm includes both accounting for non-Lambertian surface scattering on the emergent radiation above TOA and developing a more effective approach for surface BRDF retrieval from satellite-measured radiance. Comparison with the result from the Lambertian model indicates that surface BRDF influence on TOA radiance is both angle and wavelength dependent. It increases as solar zenith angle decreases or wavelength increases and becomes strongest in the view directions where the surface reflection is most anisotropic (such as in the hot spot or Sun glint regions). ¿ 2001 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Mathematical Geophysics, Modeling, Meteorology and Atmospheric Dynamics, Land/atmosphere interactions, Meteorology and Atmospheric Dynamics, Radiative processes, Meteorology and Atmospheric Dynamics, Remote sensing
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit