 |
Detailed Reference Information |
Walterscheid, R.L., Schubert, G. and Brinkman, D.G. (2001). Small-scale gravity waves in the upper mesosphere and lower thermosphere generated by deep tropical convection. Journal of Geophysical Research 106: doi: 10.1029/2000JD000131. issn: 0148-0227. |
|
A time-dependent, nonlinear, fully compressible, axisymmetric, f-plane, numerical model is used to simulate the generation of small-scale gravity waves in the upper mesosphere and lower thermosphere by intense deep convection in the troposphere. The simulations show that major convective storms in the tropics excite a broad spectrum of upper mesosphere-lower thermosphere gravity waves above the storm centers. The wave field includes a component that is guided in a thermal duct in the lower thermosphere and propagates horizontally outward from above the storm. Storms excite oscillations over the source which are initially confined to a stratospheric duct but leak into the thermospheric duct over time generating a long train of small-scale-ducted waves. This ringing phenomenon persists for several hours after the storm has ended. The ducted disturbances may propagate large distances from the source and explain observations of a strong summertime anisotropy favoring southward propagation of small-scale waves observed in the airglow over Adelaide more than 2000 km to the south of the storm events. ¿ 2001 American Geophysical Union |
|
 |
 |
BACKGROUND DATA FILES |
|
 |
Abstract |
|
 |
|
|
|
Keywords
Atmospheric Composition and Structure, Airglow and aurora, Meteorology and Atmospheric Dynamics, Middle atmosphere dynamics (0341, 0342), Meteorology and Atmospheric Dynamics, Thermospheric dynamics, Meteorology and Atmospheric Dynamics, Waves and tides |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
 |