EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Suortti et al. 2001
Suortti, T., Karhu, J., Kivi, R., Kyrö, E., Rosen, J., Kjome, N., Larsen, N., Neuber, R., Khattatov, V., Rudakov, V., Yushkov, V. and Nakane, H. (2001). Evolution of the Arctic stratospheric aerosol mixing ratio measured with balloon-borne aerosol backscatter sondes for years 1988–2000. Journal of Geophysical Research 106: doi: 10.1029/2000JD000180. issn: 0148-0227.

Balloon-borne aerosol backscatter measurements were made at 12 Arctic stations as part of a polar stratospheric cloud study. The record starts in 1988, which is well before the eruption of Mount Pinatubo in the beginning of June 1991, and continues to 2000. These measurements provide absolutely calibrated in situ detection of atmospheric aerosols with simultaneous measurements of pressure, temperature, relative humidity, and O3 partial pressure. The instrument is also capable of operating during cloudy conditions, which may be considered as an advantage compared with lidar measurements. Even though backscatter soundings represent the state of the atmosphere at the sounding time and site, we demonstrate here that with a limited, homogeneous set of measurements it is possible to effectively study the time development of atmospheric aerosol loading. The initial aim of the study has been to define the general features of aerosol distribution in the Arctic winter troposphere and stratosphere and then to document the perturbation in the lower stratospheric aerosols caused by the eruption of Mount Pinatubo and, in addition, to infer the background state of lower stratospheric aerosol loading during the pre-and post-Pinatubo conditions. Our measurements suggest that the e-folding time for the decaying volcanic aerosol intrusion was ~0.7 year and the full recovery of the Arctic lower stratosphere from the Mount Pinatubo perturbation was roughly 5 years. ¿ 2001 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Atmospheric Composition and Structure, Aerosols and particles (0345, 4801), Atmospheric Composition and Structure, Evolution of the atmosphere, Atmospheric Composition and Structure, Volcanic effects
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit