|
Detailed Reference Information |
Jacobson, M.Z. (2001). GATOR-GCMM: A global- through urban-scale air pollution and weather forecast model: 1. Model design and treatment of subgrid soil, vegetation, roads, rooftops, water, sea ice, and snow. Journal of Geophysical Research 106: doi: 10.1029/2000JD900560. issn: 0148-0227. |
|
A model that treats nesting of gas, size- and composition-resolved aerosol, radiative, and meteorological parameters from the global through urban scales (<5-km grid spacing) was developed. The model treats multiple one-way-nested layers and multiple air quality and meteorological domains in each layer between the global and the urban scales. This latter feature allows forecast of air pollution and weather at several urban or regional sites during the same simulation. Regardless of the number of domains used during a single continuous simulation, the central memory required never exceeds 1.5 times and 2.1 times that of the largest domain for gas and gas/aerosol simulations, respectively. A submodule was developed for all domains to treat ground temperatures, latent heat fluxes, and sensible heat fluxes over subgrid soil types (with and without vegetation), water sea ice, and urban areas. Urban areas are divided into road surfaces, rooftops, vegetation, and bare soil. Snow is treated over all surface types. The global-through-urban model is applied in a companion paper to study elevated ozone, ozone in national parks, and weather during a field campaign in northern and central California. ¿ 2001 American Geophysical Union |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Atmospheric Composition and Structure, Pollution—urban and regional, Atmospheric Composition and Structure, Troposphere—composition and chemistry, Meteorology and Atmospheric Dynamics, Boundary layer processes, Meteorology and Atmospheric Dynamics, Land/atmosphere interactions |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|