EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Del Grosso et al. 2000
Del Grosso, S.J., Parton, W.J., Mosier, A.R., Ojima, D.S., Potter, C.S., Borken, W., Brumme, R., Butterbach-Bahl, K., Crill, P.M., Dobbie, K. and Smith, K.A. (2000). General CH4 oxidation model and comparisons of CH4 oxidation in natural and managed systems. Global Biogeochemical Cycles 14: doi: 10.1029/1999GB001226. issn: 0886-6236.

Fluxes of methane from field observations of native and cropped grassland soils in Colorado and Nebraska were used to model CH4 oxidation as a function of soil water content, temperature, porosity, and field capacity (FC). A beta function is used to characterize the effect of soil water on the physical limitation of gas diffusivity when water is high and biological limitation when water is low. Optimum soil volumetric water content (Wopt) increases with FC. The site specific maximum CH4 oxidation rate (CH4max) varies directly with soil gas diffusivity (Dopt) as a function of soil bulk density and FC. Although soil water content and physical properties are the primary controls on CH4 uptake, the potential for soil temperature to affect CH4 uptake rates increases as soils become less limited by gas diffusivity. Daily CH4 oxidation rate is calculated as the product of CH4max, the normalized (0--100%) beta function to account for water effects, a temperature multiplier, and an adjustment factor to account for the effects of agriculture on methane flux. The model developed with grassland soils also worked well in coniferous and tropical forest soils. However, soil gas diffusivity as a function of field capacity, and bulk density did not reliably predict maximum CH4 oxidation rates in deciduous forest soils, so a submodel for these systems was developed assuming that CH4max is a function of mineral soil bulk density. The overall model performed well with the data used for model development (r2=0.76) and with independent data from grasslands, cultivated lands, and coniferous, deciduous, and tropical forests (r2=0.73, meanerror<6%). ¿ 2000 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Biosphere/atmosphere interactions, Global Change, Global Change, Biogeochemical processes, Mathematical Geophysics, Modeling
Journal
Global Biogeochemical Cycles
http://www.agu.org/journals/gb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit