EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Christian et al. 1989
Christian, H.J., Blakeslee, R.J. and Goodman, S.J. (1989). The detection of lightning from geostationary orbit. Journal of Geophysical Research 94: doi: 10.1029/89JD00791. issn: 0148-0227.

Lightning observations from satellites in low Earth orbit have been made over the past 25 years, producing estimates of global flash frequency by season and latitude as well as information on diurnal variations. However, these measurements have suffered from low detection efficiencies, poor spatial resolutions, and the inability to continuously monitor specific storms of storm systems. Using results of investigations with a high-altitude NASA U-2 aircraft and other research, a space sensor capable of mapping both intracloud and cloud-to-ground lightning discharges from geostationary orbit during day and night with a spatial resolution of 10 km and detection efficiency of 90% is currently being developed. In addition, this sensor, which is called the Lightning Mapper Sensor (LMS), will monitor storms on a continual basis. The combination of modern solid state mosaic focal planes with extensive on-board signal and permits the detection of lightning during the day. The LMS has a 10.5¿ field of view that covers all of the continental United States, large oceanic areas, all of Central America, much of South America, including the Andes and the Amazon Basin, and large regions of the intertropical convergence zone. It is anticipated that the LMS will be flown on a GOES satellite in the mid-1990s. The characteristics and design of the LMS are presented as well as a discussion of the scientific research that will be possible with this instrument. ¿ American Geophysical Union 1989

BACKGROUND DATA FILES

Abstract

Keywords
Meteorology and Atmospheric Dynamics, Lightning
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit