 |
Detailed Reference Information |
Pandis, S.N., Seinfeld, J.H. and Pilinis, C. (1990). The smog-fog-smog cycle and acid deposition. Journal of Geophysical Research 95: doi: 10.1029/90JD01040. issn: 0148-0227. |
|
A model including descriptions of aerosol and droplet microphysics, gas and aqueous-phase chemistry, and deposition is used to study the transformation of aerosol to fog droplets and back to aerosol in an urban environment. Fogs in polluted environments have the potential to increase aerosol sulfate concentrations but at the same time to cause reductions in the aerosol concentration of nitrate, chloride, ammonium and sodium and well as in the total aerosol mass concentration. The sulfate produced during fog episodes favors the aerosol particles that have access to most of the fog liquid water which are usually the large particles. Aerosol scavenging efficiencies of around 80 percent are calculated for urban fogs. Sampling and subsequent mixing of gog droplets of different sizes may result in measured concentrations that are not fully representative of the fogwater chemical composition and can introduce errors in the reported values in the reported values of the ionic species deposition velocities. Differences in the major ionic species deposition velocities can be explained by their distribution over the droplet size spectrum and can be correlated with the species average diameter. Two different expressions are derived for use in fog models for the calculation of the liquid water deposition velocity during fog growth and dissipation stages. ¿ American Geophysical Union 1990 |
|
 |
 |
BACKGROUND DATA FILES |
|
 |
Abstract |
|
 |
|
|
|
Keywords
Atmospheric Composition and Structure, Pollution—urban and regional |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
 |