|
Detailed Reference Information |
Doddridge, B.G., Dickerson, R.R., Holland, J.Z., Cooper, J.N., Wardell, R.G., Poulida, O. and Watkins, J.G. (1991). Observations of tropospheric trace gases and meteorology in rural Virginia using an unattended monitoring system: Hurricane Hugo (1989), A case study. Journal of Geophysical Research 96. doi: 10.1029/91JD00608. issn: 0148-0227. |
|
Tropospheric trace gases such as ozone and reactive nitrogen compounds exert a strong influence on global climate, but observations of these species are limited by the necessity of having a trained observer on site to monitor instruments. A technique using modern communications technology has been developed to transport and review data collected at a remote site. The site was equipped with a PAM II station and satellite data link so that raw, real-time data and equipment status were available for inspection readily on a workstation at the University of Maryland campus through a combination of wide and local area networks. CO, NO, NOy, O3, UV radiative flux, and meteorological parameters were measured in rural Virginia for a full year. The cleanest air observed over the year was associated with the passage of Hurricane Hugo over the mid-Atlantic region on September 22, 1989. Hourly average data for concentrations of CO, NOy, and O3 observed during this particular case study were as low as 90 ppbv, 570 pptv, and 11 ppbv, respectively. Within this period, daytime NO was highly variable, ranging between the detection limit of the instrument, ~20 pptv, 2.4 ppbv. These concentrations are well below the hourly concentration average at this site for these species during September 1989. Equivalent potential temperature, &thgr;e, in conjunction with the trace gas concentrations and geostrophic back-trajectories, illustrates how this hurricane influenced air parcel history; observed concentrations of CO and NOy increased with the time the air parcel spent over land. Observations at this site were consistent with current hurricane models based on mean soundings and aircraft flights. Hurricanes over land also appear to redistribute air vertically throughout the troposphere, creating the potential for substantial post-storm tropospheric column O3 increase. ¿1991 American Geophysical Union |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Atmospheric Composition and Structure, Troposphere—composition and chemistry, Atmospheric Composition and Structure, Cloud physics and chemistry, Meteorology and Atmospheric Dynamics, Convective processes, Atmospheric Composition and Structure, Instruments and techniques |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|