EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Koppers et al. 2004
Koppers, Anthony A. P., Duncan, Robert A., Steinberger, Bernhard (2004). Implications of a nonlinear40Ar/39Ar age progression along the Louisville seamount trail for models of fixed and moving hot spots. Geochemistry, Geophysics, Geosystems 5: doi: 10.1029/2003GC000671. issn: 1525-2027.
The Louisville seamount trail has been recognized as one of the key examples of hot spot volcanism, comparable to the classic volcanic Hawaiian-Emperor lineaments. The published total fusion 40Ar/39Ar data of Watts et al. <1988> showed an astonishing linear age progression, firmly establishing Louisville as a fixed hot spot in the South Pacific mantle. We report new 40Ar/39Ar ages based on high-resolution incremental heating 40Ar/39Ar dating for the same group of samples, showing a marked increase in both precision and accuracy. One of the key findings in our reexamination is that the age progression is not linear after all. The new data show a significantly decreased apparent plate velocity for the Louisville seamount trail older than 62 Ma but confirm the linear trend between 47 Ma and the present day (although based on only three samples over 2150 km). The most recent volcanic activity in the Louisville seamount trail has now been dated at 1.11 ¿ 0.04 Ma for the most southeastern seamount located at 50¿26'S and 139¿09'W. These results indicate that the Louisville age progression should be interpreted on the basis of both plate and hot spot motion. In this paper we examine our new results in conjunction with the numerical mantle flow models of Steinberger et al. <2004> that also predict marked deviations from simple linear age progressions. With these models we can achieve a good fit to the geometry of both the Hawaiian and Louisville seamount trails and their age progressions as well as the ~15¿ paleolatitudinal shift observed by Tarduno et al. <2003> for the Hawaiian hot spot between 80 and 47 Ma. If the model is restricted to Pacific hot spots only, we can improve the fit to the nonlinear age trend for the Louisville seamount trail by allowing an additional rotation change of the Pacific plate around 62 Ma and by decreasing the initiation age of the Louisville plume from 120 to 90 Ma. This improved model features a significant eastward hot spot motion of ~5¿ between 80 and 30 Ma for the Louisville hot spot, which is quite dissimilar to the southward motion of the Hawaiian hot spot during the same time interval, followed by a minor ~2¿ latitudinal shift over the last 30 Myr. If hot spot tracks are considered globally, the age trend observed for the oldest part of the Louisville seamount trail does not entirely follow the numerical model predictions. This may indicate some remaining inaccuracies in the global plate circuit, but it may also indicate that the Louisville hot spot experienced a motion somewhat different than in the numerical model: fast The Louisville seamount trail has been recognized as one of the key examples of hot spot volcanism, comparable to the classic volcanic Hawaiian-Emperor lineaments. The published total fusion 40Ar/39Ar data of Watts et al. <1988> showed an astonishing linear age progression, firmly establishing Louisville as a fixed hot spot in the South Pacific mantle. We report new 40Ar/39Ar ages based on high-resolution incremental heating 40Ar/39Ar dating for the same group of samples, showing a marked increase in both precision and accuracy. One of the key findings in our reexamination is that the age progression is not linear after all. The new data show a significantly decreased apparent plate velocity for the Louisville seamount trail older than 62 Ma but confirm the linear trend between 47 Ma and the present day (although based on only three samples over 2150 km). The most recent volcanic activity in the Louisville seamount trail has now been dated at 1.11 ¿ 0.04 Ma for the most southeastern seamount located at 50¿26'S and 139¿09'W. These results indicate that the Louisville age progression should be interpreted on the basis of both plate and hot spot motion. In this paper we examine our new results in conjunction with the numerical mantle flow models of Steinberger et al. <2004> that also predict marked deviations from simple linear age progressions. With these models we can achieve a good fit to the geometry of both the Hawaiian and Louisville seamount trails and their age progressions as well as the ~15¿ paleolatitudinal shift observed by Tarduno et al. <2003> for the Hawaiian hot spot between 80 and 47 Ma. If the model is restricted to Pacific hot spots only, we can improve the fit to the nonlinear age trend for the Louisville seamount trail by allowing an additional rotation change of the Pacific plate around 62 Ma and by decreasing the initiation age of the Louisville plume from 120 to 90 Ma. This improved model features a significant eastward hot spot motion of ~5¿ between 80 and 30 Ma for the Louisville hot spot, which is quite dissimilar to the southward motion of the Hawaiian hot spot during the same time interval, followed by a minor ~2¿ latitudinal shift over the last 30 Myr. If hot spot tracks are considered globally, the age trend observed for the oldest part of the Louisville seamount trail does not entirely follow the numerical model predictions. This may indicate some remaining inaccuracies in the global plate circuit, but it may also indicate that the Louisville hot spot experienced a motion somewhat different than in the numerical model: fast
DATABASE QUICK LINKS

EarthRef Digital Archive

BACKGROUND DATA FILES

Abstract
Abstract

Appendix: Table 1
Appendix: Table 1

Table 1
Table 1
Table 2
Table 2
Table 3
Table 3

Keywords
Geochemistry, Geochronology, Marine Geology and Geophysics, Plate tectonics (8150, 8155, 8157, 8158), Tectonophysics, Dynamics, convection currents and mantle plumes, 40Ar/39Ar geochronology, seamounts, guyots, submarine alteration, Pacific plate, hot spots
Project -- G-cubed.org Themes -- Movement, Dynamics and Geochemical evolution of the Hawaiian hotspot
This theme reports of the Ocean Drilling Leg 197 paleomagnetic tests of the hotspot motion and implications for plate motion reference frames, numerical models of plume advection, and volcanologic, radiometric and geochemical variations along the Hawaiian-Emperor hotspot chain
Journal
Geochemistry, Geophysics, Geosystems
http://www.g-cubed.org/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 200009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit