An automated gas chromatographic system was employed at a rural site in western central Alabama to measure atmospheric hydrocarbons and oxygenated hydrocarbons (oxy-hydrocarbons) on an hourly basis from June 8 to July 19, 1990. The location, which was a designated site for the Southern Oxidant Study (SOS), was instrumented for a wide variety of measurements allowing the hydrocarbon and oxy-hydrocarbon measurements to be interpreted both in terms of meteorological data and as part of a large suite of gas phase measurements. Although the site is situated in a Loblolly pine plantation, isoprene was observed to be the dominant hydrocarbon during the daytime with afternoon maxima of about 7 parts per billion by volume (ppbv). Decrease of isoprene after sunset was too rapid to be accounted for solely on the basis of gas phase chemistry. During the nighttime, α-pinene and β-pinene were the dominant hydrocarbons of natural origin. The ratio of α-pinene to β-pinene showed a well-defined diurnal pattern, decreasing by more than 30% during the night; a decrease that could be understood on the basis of local gas phase chemistry. Oxy-hydrocarbons, dominated by methanol and acetone, were the most abundant compounds observed. On a carbon atom basis, the oxy-hydrocarbons contributed about 46% of the measured atmospheric burden during the daytime and about 40% at night. The similarity of the observed diurnal methanol variation to that of isoprene and subsequent measurements <McDonald and Fall, 1993> indicate that much of the observed methanol was of local biogenic origin. Correlation of acetone with methanol suggests that it, also, has a significant biogenic source. In spite of the site's rural location, anthropogenic hydrocarbons constituted, on a carbon atom basis, about 21% of the hydrocarbon burden measured during the daytime and about 55% at night. Significant diurnal variations of the anthropogenic hydrocarbons, with increases at night, appeared to be driven by the frequent formation of a shallow nocturnal boundary layer. ¿ American Geophysical Union 1995 |