EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Schou & Pedrys 2001
Schou, J. and Pedrys, R. (2001). Sputtering of carbon monoxide ice by hydrogen ions. Journal of Geophysical Research 106: doi: 10.1029/2000JE001281. issn: 0148-0227.

Carbon monoxide is an important constituent of comet comae, of icy surfaces of planetary bodies, and of interstellar grains. We present new laboratory studies of sputtering of frozen CO by hydrogen ions for energies below 10 keV. The sputtering yield turned out to depend critically on the energy and the electronic stopping power, (dE/dx)e, for the ions. The yield for a 9 keV H+ incident on solid CO was ~34 CO/H+. For proton bombardment the yield is proportional to (dE/dx)e1.3, similar to the behavior of the sputtering yield for water ice. It means that the particle ejection occasionally requires species from two ionization/excitation events. For molecular ions the yield for CO ice increases with the square of the stopping power (dE/dx)e. The distribution of the sputtered CO molecules exhibits a maximum at 13 meV and falls off strongly with ejection energy E1. A complicating feature is the formation of a residue, possibly CO2 ice, during bombardment of solid CO. The sputtering yield depends slightly on the initial residue, similar to the case of sputtering by keV electrons. The sputtering yield and the chemical efficiency are high compared to similar properties of solid N2, which means that mixtures of these solids are preferentially depleted of CO. ¿ 2001 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Planetology, Solid Surface Planets, Erosion and weathering
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit