EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Kreslavsky & Head 2000
Kreslavsky, M.A. and Head, J.W. (2000). Kilometer-scale roughness of Mars: Results from MOLA data analysis. Journal of Geophysical Research 105: doi: 10.1029/2000JE001259. issn: 0148-0227.

The Mars Orbiter Laser Altimeter (MOLA) data are used to characterize the kilometer-scale surface roughness of Mars. The median absolute value of the differential slope at a given baseline is proposed as a data-derived measure of the surface roughness at this scale. Study of the scale dependence of roughness for the smoothest terrains gives an independent estimate of 20 cm for MOLA ranging accuracy. The baseline lengths from 0.6 to ~20 km are used, and kilometer-scale roughness is mapped for the entire surface. The maps show that different geological units have distinctive roughness characteristics. Scale dependence of roughness for a number of geological units is presented and discussed. The southern polar cap is rougher than the northern at kilometer and subkilometer scale, which suggests differences in the sublimation/condensation balance. The Vastitas Borealis Formation has a distinctive 3-km-scale background surface topography, which suggests a nonvolcanic origin for its upper layer. Young volcanic plains in Amazonis Planitia and the eastern part of Elysium Planitia are very similar to each other in their roughness characteristics and differ from other volcanic plains on Mars, which suggests a distinctive eruption style. There are systematic latitudinal variations of roughness in both the southern highlands and the northern lowlands: terrains at high latitude are smoother at short baselines; the characteristic vertical scale related to this difference is several meters. Processes that could be responsible for formation of this trend include creep of ice-rich near-surface material at high latitudes, treatment of the surface with repetitive deposition and sublimation of seasonal frost, climate-controlled deposition and/or cementation of dust at high latitudes, and repetitive sublimation and accumulation of subsurface ice at low latitudes with climate variations. All mechanisms of origin could operate more effectively under different climate conditions. Relevant morphological observations favor mechanisms involving deposition of smooth blankets at high latitudes. ¿ 2000 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Planetology, Solid Surface Planets, Erosion and weathering, Planetology, Solid Surface Planets, Polar regions, Planetology, Solid Surface Planets, Surface materials and properties, Planetology, Solar System Objects, Mars
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit