EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Jasper et al. 1994
Jasper, J.P., Hayes, J.M., Mix, A.C. and Prahl, F.G. (1994). Photosynthetic fractionation of 13C and concentrations of dissolved CO2 in the central equatorial Pacific during the last 255,000 years. Paleoceanography 9: doi: 10.1029/94PA02116. issn: 0883-8305.

Carbon isotopically based estimates of CO2 levels have been generated from a record of the photosynthetic fractionation of 13C(≡ϵp) in a central equatorial Pacific sediment core that spans the last ~255 ka. Contents of 13C in phytoplanktonic biomass were determined by analysis of C37 alkadienones. These compounds are exclusive products of Prymnesiophyte algae which at present grow most abundantly at depths of 70--90 m in the central equatorial Pacific. A record of the isotopic composition of dissolved CO2 was constructed from isotopic analyses of the planktonic foraminifera Neogloboquadrina dutertrei, which calcifies at 70--90 m in the same region. Values of ϵp, derived by comparison of the organic and inorganic Δ values, were transformed to yield concentrations of dissolved CO2(≡ce) based on a new, site-specific calibration of the relationship between ϵp and ce. The calibration was based on reassessment of existing ϵp versus ce data which support a physiologically based on model in which ϵp is inversly related to ce. Values of PCO2, the partial pressure of CO2 that would be in equilibrium with the estimated concentrations of dissolved CO2, were calculated using Henry's law and the temperature determined from the alkenone-unsaturation index UK37.

Uncertainties in these values arise mainly from uncertainties about the appropriateness (particularly over time) of the site-specific relationship between ϵp and 1/ce. These are discussed in detail and it is concluded that the observed record of ϵp most probably reflects significant variations in ΔpCO2, the ocean-atmosphere disequilibrium, which appears to have ranged from ~110 μatm during glacial intervals (ocean>atmosphere) to ~60 μatm during interglacials. Fluxes of CO2 to the atmosphere would thus have been significantly larger during glacial intervals. If this were characteristic of large areas of the equatorial Pacific, then greater glacial sinks for the equatorially evaded CO2 must have existed elsewhere. Statistical analysis of air-sea pCO2 differences and other parameters revealed significant (p<0.01) inverse correlations of ΔpCO2 with sea surface temperature and with the mass accumulation rate of opal. The former suggests response to the strength of upwelling, the latter may indicate either drawdown of CO2 by siliceous phytoplankton or variation of 2>/4> ratios in upwelling waters. ¿ American Geophysical Union 1994

BACKGROUND DATA FILES

Abstract

Keywords
Oceanography, General, Paleoceanography
Journal
Paleoceanography
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit