EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Khatiwala et al. 2001
Khatiwala, S., Shaw, B.E. and Cane, M.A. (2001). Enhanced sensitivity of persistent events to weak forcing in dynamical and stochastic systems: Implications for climate change. Geophysical Research Letters 28: doi: 10.1029/2000GL012773. issn: 0094-8276.

Low-dimensional models can give insight into the climate system, in particular its response to externally imposed forcing such as the anthropogenic emission of green-house gases. Here, we use the Lorenz system, a chaotic dynamical system characterized by two regimes, to examine the effect of a weak imposed forcing. We show that the probability density functions (PDF's) of time-spent in the two regimes are exponential, and that the most dramatic response to forcing is a change in the frequency of occurrence of extremely persistent events, rather than the weaker change in the mean persistence time. This enhanced sensitivity of the tails of the PDF's to forcing is quantitatively explained by changes in the stability of the regimes. We demonstrate similar behavior in a stochastically forced double well system. Our results suggest that the most significant effect of anthropogenic forcing may be to change the frequency of occurrence of persistent climate events, such as droughts, rather than the mean. ¿ 2001 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Mathematical Geophysics, Nonlinear dynamics, Meteorology and Atmospheric Dynamics, Climatology
Journal
Geophysical Research Letters
http://www.agu.org/journals/gl/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit