In this paper we use experimentally determined values of effective attenuation rate, excitation factor, and relative phase velocity, along with the theoretical expressions derived by C. and P. Greifinger, to establish the seasonal variation of representative ionospheric conductivity parameters. These parameters include the reflection heights h0 and h1 (or hE), inverse scale height β, and reference height H. The basis for this analysis is provided by the 1990--1992 76-Hz field strength measurements taken at four land-based ELF monitoring sites established by the U.S. Navy. The source for these measurements was the U.S. Navy's dual-antenna transmitting system (WTF/MTF). The main conclusion of this paper is that the summertime and January nighttime attenuation rates are substantially lower than during other times of the year. This nighttime attenuation rate decrease appears to be mainly due to an increase in the inverse scale height β, rather than to an increase in the reflection heights h0 and hE. ¿ 1999 American Geophysical Union |