EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Kintner et al. 2001
Kintner, P.M., Kil, H., Beach, T.L. and de Paula, E.R. (2001). Fading timescales associated with GPS signals and potential consequences. Radio Science 36: doi: 10.1029/1999RS002310. issn: 0048-6604.

The effect of equatorial ionospheric scintillations on the operation of GPS receivers is investigated, with special attention given to the effect of scintillation timescales on the code division multiple access (CDMA) protocol used by GPS. We begin by examining the timescales of scintillation fades modeled as a horizontally drifting pattern whose timescales are determined by the Fresnel length and the drift speed. The model is tested by comparing the speed, determined by dividing the Fresnel length by the autocorrelation time (width), with the speed estimated using spaced receivers, and the two independent estimates of speed are shown to possess a linear relationship. Next we show that the scintillation pattern drift speed is given by the difference of the ionospheric drift and the speed of the GPS signal F region puncture point. When the ionosphere and GPS signal puncture point speeds match, the fade timescales lengthen. Additionally, if the fade depth is adequate, during periods of longer fade times the loss of receiver lock on GPS signals is more likely, as shown in several examples; that is, both larger fade depths and longer fade timescales are required to produce loss of tracking. We conclude by demonstrating that speed matching or resonance between the ionosphere and receiver is most likely when the receiver is moving from west to east to speeds of 40--100 m/s (144--360 km/h). This is in the range of typical aircraft speeds. ¿ 2001 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Electromagnetics, Scattering and diffraction, Ionosphere, Equatorial ionosphere, Ionosphere, Ionospheric irregularities, Radio Science, Space and satellite communication
Journal
Radio Science
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit