EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Hobbins et al. 2001
Hobbins, M.T., Ramírez, J.A., Brown, T.C. and Claessens, L.H.J.M. (2001). The complementary relationship in estimation of regional evapotranspiration: The complementary relationship areal evapotranspiration and advection-aridity models. Water Resources Research 37: doi: 10.1029/2000WR900358. issn: 0043-1397.

Two implementations of the complementary relationship hypothesis for regional evapotranspiration, the Complementary Relationship Areal Evapotranspiration (CRAE) model and the Advection-Aridity (AA) model, are evaluated against independent estimates of regional evapotranspiration derived from long-term, large-scale water balances (1962--1988) for 120 minimally impacted basins in the conterminous United States. The CRAE model overestimates annual evapotranspiration by 2.5% of mean annual precipitation, and the AA model underestimates annual evapotranspiration by 10.6% of precipitation. Generally, increasing humidity leads to decreasing absolute errors for both models, and increasing aridity leads to increasing overestimation by the CRAE model and underestimation by the AA model, with the exception of high, arid basins, where the AA model overestimates evapotranspiration. Overall, the results indicate that the advective portion of the AA model must be recalibrated before it may be used successfully on a regional basis and that the CRAE model accurately predicts monthly regional evapotranspiration. ¿ 2001 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Hydrology, Evapotranspiration, Hydrology, Hydrologic budget
Journal
Water Resources Research
http://www.agu.org/wrr/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit