EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Ebert et al. 1996
Ebert, H.D., Chemale, F., Babinski, M., Artur, A.C. and Van Schmus, W.R. (1996). Tectonic setting and U/Pb zircon dating of the plutonic Socorro Complex in the Transpressive Rio Paraíba do Sul Shear Belt, SE Brazil. Tectonics 15: doi: 10.1029/95TC03247. issn: 0278-7407.

The Precambrian Rio Para¿ba do Sul Shear Belt comprises a 200-km-wide anastomosing network of NE-SW trending ductile shear zones extending over 1000 km of the southeastern coast of Brazil. Granulitic, gneissic-migmatitic, and granitoid terrains as well as low- to medium-grade metavolcano-sedimentary sequences are included within it. These rocks were affected by strong contractional, tangential tectonics, due to west-northwestward oblique convergence of continental blocks. Subsequent transpressional tectonics accomodated large dextral, orogen-parallel movements and shortening. The plutonic Socorro Complex is one of many deformed granites with a foliation subparallel to that of the shear belt and exposes crosscutting relationships between its tectonic, magmatic, and metamorphic structures. These relationships point to a continuous magmatic evolution related to regional thrusts and strike slip, ductile shear zones. The tectonic and magmatic structural features of the Serra do Lopo Granite provide a model of emplacement by sheeting along shear zones during coeval strike-slip and cross shortening of country rocks. Geochronological data indicate that the main igneous activity of Socorro Complex spanned at least 55 million years, from the late stage of the northwestward ductile thrusting (650 Ma), through right-lateral strike slip (595 Ma) deformation. The country rocks yield discordant age data, which reflect a strong imprint of the Transamazonian tectono-metamorphic event (1.9 to 2.0 Ma). We propose a model for the origin of calc-alkaline granites of the Ribeira Belt by partial melting of the lower crust with small contributions of the lithospheric mantle during transpressional thickening of plate margins, which were bounded by deep shear zones. The transpressional regime also seems to have focused granite migration from deeper into higher crustal levels along these shear zones. ¿ American Geophysical Union 1996

BACKGROUND DATA FILES

Abstract

Keywords
Tectonophysics, Continental contractional orogenic belts, Tectonophysics, Physics of magma and magma bodies, Tectonophysics, Plate boundary—general
Journal
Tectonics
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit