EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Molina Garza & Geissman 1999
Molina Garza, R.S. and Geissman, J.W. (1999). Paleomagnetic data from the Caborca terrane, Mexico: Implications for Cordilleran tectonics and the Mojave-Sonora megashear hypothesis. Tectonics 18: doi: 10.1029/1998TC900030. issn: 0278-7407.

Two ancient magnetizations have been isolated in rocks of the Caborca terrane, northwest Mexico. The characteristic magnetizations of Neoproterozoic and Paleozoic miogeoclinal shelf-strata, arc-derived Lower Jurassic marine strata, and Jurassic volcanic and volcaniclastic rocks are of dual polarity and east-northeast declination (or south-southwest) and shallow inclination. Magnetizations in Neoproterozoic and Paleozoic miogeoclinal strata are interpreted as secondary (J*) and to be of similar age to those observed in Lower and Middle Jurassic rocks. Remanence acquisition is bracketed between about 190 and 160 Ma. The overall mean (D=15.0¿, I=8.5¿; n=38 sites; six localities; k=19.1, &agr;95=5.5¿) suggests a moderate to large clockwise rotation of 12 to 50¿ (depending on reference direction assumed) of the Caborca terrane, and rocks of the Sonoran segment of the Cordilleran volcanic arc, with respect to the North America craton. When compared with expected inclinations, observed values are not anomalously steep, arguing against statistically significant southward latitudinal displacement of the Caborca block after remanence acquisition. Late Cretaceous intrusions yield primary, dual-polarity steep inclination K magnetizations (D=341.4¿, I=52.3¿; n=10 sites; five localities; k=38.3, &agr;95=7.9¿) and have locally remagnetized Neoproterozoic and Jurassic strata. When present, secondary (K*) magnetizations in Neoproterozoic strata are of higher coercivity and higher unblocking temperature than the characteristic (J*) magnetization. Importantly, the regional internal consistency of data for Late Cretaceous intrusions suggests that effects of Tertiary tilt or rotation about a vertical axis over the broad region sampled (~5000 km2) are not substantial. Late Cretaceous primary (K) magnetizations and secondary (K*) magnetizations yield a combined mean of D=348.1¿, I=50.7¿ (N=10 localities; 47 sites; k=53.5, &agr;95=6.7¿), indicating at most small (<~10¿) clockwise rotation of the Caborca region with respect to the craton. Permissible post-Late Cretaceous latitudinal displacement is near or below the detection limit of paleomagnetism (<~300 km). Limited data from Lower Cretaceous strata of the Bisbee Group (D=339.9¿, I=47.9¿; n=4 sites) suggest that the modest clockwise rotations inferred on the basis of J* magnetizations in Jurassic and older strata occurred in Jurassic time. Together, the lack of evidence for southward displacement, yet evidence for statistically significant clockwise rotation, and the overall similarity of Jurassic magnetizations in the Cordilleran arc with those of the Caborca block, despite the fact that some of them are clearly secondary, are not consistent with the Mojave-Sonora megashear hypothesis of Late Jurassic left-lateral strike-slip motion of the crust of northern Mexico. ¿ 1999 American Geophysical Union

DATABASE QUICK LINKS

MagIC Database

BACKGROUND DATA FILES

Abstract

MagIC SmartBook v1

Keywords
Geomagnetism and Paleomagnetism, Paleomagnetism applied to tectonics (regional, global)
Journal
Tectonics
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit