EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Blower et al. 2001
Blower, J.D., Keating, J.P., Mader, H.M. and Phillips, J.C. (2001). Inferring volcanic degassing processes from vesicle size distributions. Geophysical Research Letters 28: doi: 10.1029/2000GL012188. issn: 0094-8276.

Both power law and exponential vesicle size distributions (VSDs) have been observed in many different types of volcanic rocks. We present results of computer simulations and laboratory analogue experiments which reproduce these findings and show that the distributions can be interpreted as the product of continuous bubble nucleation resulting from non-equilibrium degassing. This ongoing nucleation causes the bubbles to evolve through an exponential size distribution into a power law size distribution as nucleation and growth progress. These findings may explain the apparent contradiction between present models of bubble growth in magmas, which predict that degassing in explosive eruptions is a non-equilibrium process, and models of conduit flow, which assume perfect equilibrium degassing. The process of continuous nucleation is the mechanism whereby the volcanic system maintains near-equilibrium in the case of rapid depressurization and slow volatile diffusion. ¿ 2001 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Mathematical Geophysics, Modeling, Mathematical Geophysics, Fractals and multifractals, Physical Properties of Rocks, Microstructure, Volcanology, Eruption mechanisms
Journal
Geophysical Research Letters
http://www.agu.org/journals/gl/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit