EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Moltyaner 1993
Moltyaner, G.L. (1993). Advection in geologic media. Water Resources Research 29: doi: 10.1029/93WR01274. issn: 0043-1397.

In situ sensing technology, used in a series of natural-gradient tracer tests at the Chalk River Laboratories in Ontario, leads to the introduction of a conceptually new approach to the study of groundwater motion in porous media. As opposed to the conventional approach, based on the consideration of a fictitious fluid continuum with fluid properties distributed over both voids and solids, in the new approach the actual groundwater motion in the void space of a porous medium is considered and described at the local scale by the statistical characterization of the propagation of gamma-radiation energy associated with the moving water as a tracer. The essential feature of the new approach is that the mean free path of a gamma-energy photon instead of the porosity is used as a scaling factor in transferring information associated with pore-scale fluid motion to the local scale. This scaling factor is employed for reintroducing the familiar particle model of fluid motion but at the local scale. It is shown that when the local-scale dispersion is neglected, the evolution of local-scale fluid particles making up the tracer plume can be described by the advection equation; its equation of characteristics describes trajectories of local-scale particles. A simple analytical solution to the advection equation is then used to produce three-dimensional images of the spatial distribution of local-scale particles observed in the Twin Lake test. It is also shown that the spatial averaging procedure with regard to the weighting function for a spherical averaging volume of one mean free path radius may be used to introduce the three-dimensional field of local-scale concentration. The averaging procedure is then used to illustrate that the concept of the three-dimensional field of plume-scale concentration does not make physical sense and only the one-dimensional plume-scale concentration field may be introduced in shallow aquifers. ¿ American Geophysical Union 1993

BACKGROUND DATA FILES

Abstract

Journal
Water Resources Research
http://www.agu.org/wrr/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit