A technique for using satellite radar altimetry data to estimate the temporal variation of the water level in moderate to large lakes and enclosed seas is described. Great Lakes data from the first 2 years of the U. S. Navy's Geosat Exact Repeat Mission (November 1986 to November 1988), for which there is an improved orbit, are used to demonstrate the technique. The Geosat results are compared to the lake level data collected by the Great Lakes Section, National Ocean Service, National Oceanic and Atmospheric Administration, and are found to reproduce the temporal variations of the five major lakes with root-mean-square error (rms) ranging from 9.4 to 13.8 cm and a combined average of 11.1 cm. Geosat data are also analyzed for Lake St. Clair, representing a moderate-sized lake, with a resulting rms of 17.0 cm. During this study period, the water level in the Great Lakes varied in a typical annual cycle of about 0.2 m (0.5 m for Lake Ontario) superimposed on a general decline of approximately 0.5 m. The altimeter data reproduced the general decline reasonably well for all the lakes, but the annual cycle was obscured in some lakes due to systematic errors in the altimeter data. Current and future altimetry missions will have markedly improved accuracy which will permit many moderate (25 km diameter) or larger lakes or enclosed seas to be routinely monitored. |